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Abstract

All failure detection methods are based, either explicitly or
implicitly, on the use of redundancy, i.e. on (possibly dynamic)
relations among the measured variables. The robustness of the failure
detection process consequently depends to a great degree omn the
reliability of the redundancy relatioms, which in turn is affected by
the inevitable presence of model uncertainties. In this paper we
address the problem of determining redundancy relatioms that are
optimally robust, in a sense that includes several major issues.of
importance in practical failure detéction, and that provides a
significant amount of intuition concerning the geometry of robust
failure detection. We also give a procedure, involving the comstruction
of a single matrix and its singular value decomposition, for the
determination of a complete sequence of redundancy relations, ordered in
terms of their level of robustmess. This procedure also provides the
basis for comparing levels of robustness in redundancy provided by
different sets of sensors, &——
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1. Iatroduction

A wide variety of techniques has been proposed in recent years for
the detection, isolation, and accommodation of failures in dynamic
L systems (see, for example, the surveys in [1,4]). In one way or another,

f% _all of these methods involve the generation of signals that are
J- _accentuated by the presence of particular failures if these failures
;nﬁ hﬁﬁe actually occurred. The procedures for generating these signals in

- "turn depend on models relating the measured variables. Consequently, if
;a any errors in these models have effects on the observables that are at
j: all like the effects of any of the failure modes, then these model
- errors may also accentuate the signals. This leads us directly to the

(-7~ issue of robust failure detection, that is, the design of a system that
is maximally semsitive to the effects of failures and minimally
sensitive to model errors.

The work described here focuses on directly designing a failure
) detection system that is insemsitive to model errors (rather thanm
¢ designing a system that attempts to compensate the detection algorithm
- " by estimating uncertainties on-line, see [6, 7, 12]). The initial
. impetus for our approach came from the work reported in [5, 13], in the
context of aircraft failure detection. The noteworthy feature of that
- project was that the dynamics of the aircraft were decomposed in order
to analyze the relative reliability of each individual source of
potentially useful failure detection information. In this way, a design

was developed that ut.lized only the most reliable information.

In [2] we presented the results of our initial attempt to extract
e the essence of the method used in [9, 13] in order to develop a general

v approach to robust failure detection. As discussed in those references
:h and in others (such as [3, 7, 8]), 211 failure detection systems are
i based on exploiting analytjcal redundancy ations or (generalized)
Y parity checks. These are simply functions of the temporal histories of
. the measured quantities that have the property of being small (ideally
"::' zero) when the system is operating normally. Essentially all of the

recently developed general approaches to failure detection make

- implicit, rather than explicit use of all of these relatioms. That is,
-! these general methods use an overall dynamic model as the basis for
= designing failure detection algorithms. While such a model certainly
captures all of the relationships among the measured variables, it does
not in any way discriminate among these individual relationships. For
this reason, a top-down application of any of these methods mixes

together information of varying levels of reliability. What would
T clearly be preferable would be a general method for explicitly
¢
..'_; e ,-h', - S ~:_:.‘.. o .:.:_‘ _:,-.. -.: ............... ._'..-_:-:_:-(,‘- ........ : -:{:-'_'{;'. —:. o ~:- si‘; 3 'O.‘«: B AT, e e




o identifying and utilizing only the most reliable of the redundancy
relations. :

SAN e

One criterion for measuring the reliability of a particular
¢ redundancy relation was presented in [2] and was used to pose an
optimization problem to determine the most reliable relation. This

[ Y,V Y

-~ criterion has the feature that it specifies robustness with respect to a
ﬁ{ particular operating point, thereby allowing the possibility of
i adaptively choosing the best relations. However, a drawback of this
- approach is that it leads to an extremely complex optimization problem.
s Moreover, if ome is interested in obtaining a list of redundancy
:; relations that is ordered from most to least reliable, one must
:S essentially solve a separate optimization problem for each relatiom in
- the list.

{I In this paper we look at an alternative measure of relisbility for
 {; a redundancy relation. Not only does this alternative have a helpful
jﬁ geometric interpretation, but it also leads to a far simpler

optimization procedure, involving a single singular value decomposition.
- In addition, it allows us in a natural and computationally feasible way
to consider issues such as scaling, relative merits of alternative
sensor sets, and explicit tradeoffs between detectability and
robustness. '

In Section 2 we review the notion of analytical redundancy for
perfectly known models, and then provide a geometric interpretation that
& forms the starting point for our investigation of robust failure
detection. Section 3 addresses the problem of robustness using our
) geometric ideas, and solves a version of the optimally robust redundancy
problem. In Section 4 we discuss extensions to include three important
issues not included in Section 3: noise, known inputs, and the
5 detection/robustness tradeoff. We conclude the paper in Section 5 with
' a8 discussion of several other topics, including the relatiomship of our
= results to those in [2] and the use of this formalism to measure and
jQ ' compare the levels of robust redundancy associated with different system
f;ﬂ configurations.
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2, Redundancy Relations

This paper focuses attention on linear, time-invariant, discrete-
time systems. In this section we consider the uncertainty-free model

x(k+l) = Ax(k) + Bu(k) , (1)
y(k) = Cx(k) + Du(k) , (2)

vhere x is an n-dimensional state vector, u is an m~dimensional vector
of known inmputs, y is an r-~dimensional vector of measured outputs, and
A, B, C and D are known matrices of appropriate dimensions. A
redundancy relation for this model is some linear combination of present
and lagged values of u and y that is identically zero if no changes
(i.e. failures) occur in (1), (2).

As discussed in [2], redundancy relatiouns cam be specified
mathematically in the following way. The subspace of (s+l)r-
dimensional vectors given by

c
Pe {vilvl|cal|=0} (3)

CA®

is called the parity space of orxder s (to be distinguished from the s-
step unobservable subspace, which corresponds to the right null space of
the matrix in (3) rather than its left null space). We shall denote
(s+l)r by N. Every vector v in (3) can be associated at any time k with
a parity check, r(k): .

y(k-s) u(k-s)
(k) = vI[ | y(k-8s+1)| - B | u(k-s+1)]| ] , (4)
y(k) u(k)
-D w
CB D 0
H=|CAB CB D - . (5)

cA28 CcAB CB D

cas-lp ., . CAB CB D

.......
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.....................................
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(The development in Sections 2 to 4 deals with s single, fixed value of
s. Therefore, to avoid notational clutter, we shall not index subspaces
such as P in (3) or matrices such as H in (4) with the subscript s.
Consideration of different values of s is contained in Sectiom 5.) By
(1), (2), the quantity in brackets [.] in (4) equals

C
cA | x(k-s) . (6)

CAS

Hence, by (3), we see that the simple redundancy relation or parity
check

r(k) = 0 (7)
is satisfied.

It is evident from (4) and (7) that a redundancy relation is simply
an input-output model for (or comstraint on) part of the dynamics of the
system (1), (2). This interpretation of a redundancy relation allows us
to make contact with the numerous existing failure detection methods.
These methods are typically based on a noisy version of the model (1),
(2) that represents normal system behavior, together with a set of
deviations from this model that represent the several failure modes.
However, rather than applying such methods to a single, all-encompassing
model as in (1), (2), one could alternatively apply the same techniques
to individual models as in (4), (7), or to a combination of several of
these, which serves to isolate individual (or specific groups of) parity
checks. (See Section 5 for some further comments on this point.) This is
precisely what was dome in [5, 13], for example. The advantage of such
an approach is that it allows one to separate the information provided
by redundancy relations of differing levels of reliability, something
that is not easily done when one starts with the overall model (1), (2),
which combines all redundancy relations.

In the next two sections we address the main problem of this paper,
vhich is the determination of optimally robust redundancy relations.
The key to this approach is obtained by re-examining (3)=(7), in order
to suggest a geometrical interpretation of parity relationms. In
particular, consider the model (1), (2) and let Z denote the range of
the matrix in (3). Then the parity space P is the orthogonal complement
of Z, and a complete set of parity checks, of order s and of the form
(4), (7), is given by the orthogonal projection of the vector of input-
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adjusted observations
y(k-s) u(k-s)
y(k-s+1)| - B |u(k-s+l) (8)
y(k) ulk)

onto P.

To illustrate this, consider an example in which the first two
components of y measure scaled versions of the same variable, i.e.

yz(k) = ayl(k) o 9)

Then, as illustrated in Figure 1, the subspace Z in y; - y; space is
simply the line specified by (9). Furtherwore, in this case the obvious
parity relation is

(k) = yo(k) - ayj(k) , (10)

which is nothing more than the orthogonal projection of the observed
pasir of values y;(k) and yp(k) onto the line P perpendicular to Z
(Figure 1). For interpretations of the space P in purely matrix terms
and in terms of polynomial matrices, we refer the reader to [9] and [3],
respectively. It is the geometric interpretation, however, that we
shall utilize here.
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Value of the parity relation
r=y,-ay,

Figure 1: An Example of the Geometric Interpretation of Parity
Relations.
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3. A Geometric Approach to Robust Redundancy

To begin, let us focus on a model that is not driven by either
unknown noise or known sigrals:

x(k+1) = & x(k) ' (11)
y(k) = € x(k) (12)

wvhere q indexes the models associated with different possible values of
the unknown parameters. Throughout this paper (except for a brief
discussion in Section 5), we consider only the case where q is taken
from a finite set of possibilities, say q=1, 2,..,Q. In practice, this
might involve choosing representative points out of the actual,
continuous range of parameter values, reflecting any desired weighting
on the likelihood or importance of particular sets of parameter values.

Define the (s-step) observation space zZ, by

Cq

Z = range| C

q (13)

qu *

ch:

This is the subspace in which the window of observations for the system
(11), (12) 1lives, as x(k-s) varies over all possible values. For a given
q, the parity space is the orthogonal complement, Pq,of Z_ . However,
the orthogonal complement of one observation space will not be the
orthogonal complement of another distinct observation space. It is
therefore in general impossible to find parity checks that are perfect
for all possible values of q. That is, in general we cannot find a
subspace P that is orthogonal to zq for all q.

What would seem to make sense in this case is to choose a subspace
P that is "as orthogonal as possible" to all possible Z,. Returning to
our simple example, suppose that y, = ay) but that “a” is only knowa to
lie in some interval. In this case we obtain the picture shown in Figure
2. The shaded regions here represents the range of (yl, yz) values
consistent with the uncertainty in “a®. Intuitively, what would seem to
be a good choice for P (assuming that “a” is equally likely to lie
anyvhere in the interval (24)) is the line that bisects the obtuse angle
between the shaded sectors in Figure 2. It is precisely this geometric
picture that is generalized and built upon in this paper.
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S
Figure 2: Illustrating the choice of G in the presence
- of uncertain parameters.
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For the general case, our procedure will be to first compute an
average observation space Z; that is as close as possible, in a sense to
be made precise, to all of the Z_. We shall then choose P to be the
orthogonal complement of Z. (This idea is also illustrated in Figure 2,
vhere the average observation space Zo is depicted as the line that
bisects the shaded region, and the line P then represents its orthogonal
complement.) Note that the zq are subspaces of possibly differing
dimensions, embedded in a space of dimenmsiom N = (s+l)r, correspo.ding
to histories of the last s+l values of the r-dimensional output.
Consequently, if we would like to determine the p best parity checks (so
that dim P = p), we need to find a subspace Z; of dimension N-p.

A Preliminary Scaling: Before stating the criterion that defines Zj, it
is necessary to take account of a fact that has been glossed over so
far. It is not sufficient to simply examine the subspaces in which
signals lie; one has also to comsider the characteristic magnitudes and
directions of the excursions of signals in the subspaces to which they
are confined. It will typically be the case that some components (or
combinations of components) of x(k-8) are larger than others, because
they may be measured in different units and excited differently. Hence
certain excursions in observation space are more likely than cthers. To
take account of this, assume for now that we are able to find a

nonsingular scaling matrix M_  such that, with the change of basis

q

x = qu' . ' (14)

one obtains a variable w that is governed by a similarity-transformed
version of (11), (12) and has "equally likely" excursions of "unit
length” in each direction under the q-th model. This sort of
RO normalization is discussed more at the end of this section and in
. Section 4.1, where observation and process noise are incorporated into
the model. (See also [11], in which scaling is also considered in the
context of the design of a failure detection system.) We can now use the
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o Cqu
p:l as a spanning set for Z_. We shall denote the matrix in (15) by the pom-
. boldface Z.. We shall, in the remainder of this paper, consistently use
L a boldface capital letter to denote the subspace spanned by the columns
- of a matrix that is denoted by the corresponding non-boldface capital.
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The criterion for the best choice of Zy may now be defined in the
following manner. With Zj, .., Zq denoting the scaled matrices im (15)
whose columns span the possible subspaces in which the observation
histories may lie under normal conditions, define the NxQn matrix

A
RS
b

A A
[
et

Y AR [21: cee :ZQ] (16)

The optimum choice for Zy is then taken to be the span of the columns of
the matrix Z, that minimizes

Nz - zo N3 (17)

subject to the constraint that rank Zg = N-p (which ensures that the
orthogonal complement P of Z; has dimension p). Here Il *llg denotes the
Frobenius norm, which is defined as the sum of the squares of the
entries of the associated matrix. The matrix Zg is thus chosen so that
the sum of the squared distances between the columns of Z and of Zj is
minimized, subject to the conmstraint that Z; contains only N-p linearly
independent columns.

The optimization problem we have just posed is easy to solve. In
particular let the singular value decomposition (see [14, 15]) of Z be

given by
zZ=0)YVv |, (18)
where
01 ; T
02 0 i
l= . I 0 s (19)
0 . |
i o 1

and U and V are orthogonal matrices, Here 0y £ 09 £ ... L0y are the
) singular values of Z, ordered by magnitude. Note that we .have actually
,‘ assumed N < Qu . If this is not the case, we can make it so without
changing the optimum choice of Zg by padding Z with additiomal columns
of zeros. As shown in [17] (see also [18]), the matrix Z; minimizing
(17) is given by

- ~
. . . e et e T
- R L . e . . % . e
«a® m. o om e o omte e e e e e - Tt %N LR et
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Moreover, since the columns of U are orthonormal, ve immediately see
that the orthogonal complement of the range Zy of Zy is given by the
first p left singular vectors of Zg, i.e. the first p columns of U.
Consequently, an orthonormal basis for the parity space P is given by

P' [ul’oo-’up] (21)

and uj,..,u, define optimum redundancy relations or parity checks.?

P

There are additional reasons for choosing this method for
determining Z; and P, apart from the fact that the computation just
described is ‘quite straightforward. Firstly, minimization of the
criterion in (17) does produce a space that is as close as possible in a
natural sense to a specified set of directions, namely the coludns of
{Zq. q=1,..,Q} . Thanks to the scaling (14), these columns represent
a complete set of "equally likely"™ directions in the observation space
Z_ (corresponding to the "“equally likely" values of the scaled state w =
(i,0,...,01T, (0,1,...,0]1T, etc.). A second (and more precisely stated)
reason follows from an alternative interpretation of our choice of P
that provides some very useful insight.

Specifically, recall that what we wish to do is to find a subspace
P that is as orthogonal as possible to all the subspaces Z, . Translating
this to statements about bases for these spaces, we would like to choose
an Nxp matrix P, normalized by the condition that it have orthonormal
columns (i.e. PTP = I , 80 that P is the orthogonal projection onto the
subspace P) , to make each of the matrices PTz as close to zero as
possible. Now, as shown in the Appendix, the choice of P given in (21)
also minimizes

Q
- T 2
J= z ez lig , (22)
q=1
yielding the minimum value

*Note that if 0541 = 0, then (a) Zg actually has rank less than N-p and
(b) there is a perfectly robust parity space of dimension at least p+l.







(23)

£, the same choice of P can also
aningful criteria.

sult (22), (23) should be noted.
tforward way in which to include
18 in (22). Specifically, if ag

(24)

» described previously, but with
e step further, if we normalize
hink of them as representing the
sible system models. Thus J; in
value of IIPTqulz , where the
ncertainty. Furthermore, if we
a state w with unit covariance
e interpreted as E (Il c(x) 1),
used to denote the vector whose
ity checks determined by the

s (25)

k-s8), assuming that the data is
g this with the probabilistic

(26)

and the model uncertainty. It is
the next section.

salue (23) provides us with an
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interpretation of the singular valy
provides a sequence of parity rela
robust: u; is the most reliable p
robustness measure; u, is the nex!
robustness measure; etc. Consequent
decomposition, we can obtain a ¢
redundancy relation problem for a £
length time history of output values.
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4. Three Extensions

In this section we develop three extensions of the result of the
preceding section, through modifications that entail no fundamental
increase in complexity. The treatment of noise is first addressed, in
Section 4.1, vhile the inclusion of known inputs is discussed in Section
4.2, Finally, the issue of designing parity checks for robust detection
of a particular failure mode is examined in Sectiom 4.3.

4.1 Observation and Process Noise

In addition to choosing parity relations that are maximally
insensitive to model uncertainties, it is also important to choose
relations that suppress noise. Consider the model

x(k+l) = Aqx(k) + Bqu(k), (27)
y(k) = qu(k) + un(k), (28)

where u(.) is a zero mean, unit covariance, white noise process. We
assume that x and y have attained stationarity, and that the steady-
state covariance of x is given by

- T
sq uquq (29)

The time window of observations for (27), (28) is now given by

y(k-s) Cq u(k-s)

y(k-s+l)| = chq qu(k-s) + nq u(k-s+1) (30)
8

y(k) CqAq . u(k)

where w(k-s) has zero mean and unit covariance — cf. (14), (15) and the
discussion at the end of Section 3 — and H_ has the same structure as
in (8), except that all matrices are replaced by their subscripted
versions, since it is the q-th model that is under consideration. We
shall write (30) more compactly as

(k) = Zqwlk-s) + H U(K) , 31

wvith the definitions of the symbols being obvious from (30). Im
particular, note that the U(k) has unit covariance and is independent of
V(k"! ) .
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A natural extension of the minimization criterion (24), (26) is
then provided by

Q
3= 3 ag (el 2) (32)
q=1
where
(k) = PTY(k) (33)

and where E_, denotes the expectation over w(k-s) and U(k), assuming that
the data is generated by the q-th model. As before, J is to be minimized
by choice of P that satisfies PIP = I , and the parity space P will
then be taken to be the range of P.

For simplicity, let us first assume that a, =1 for all q. It is

then quite directly seen that

q

Q
- T T T
J= 3 trlP (zqzq + B H )P]
q=1
Q T 2
- q)-:llll’ [zq:nql s . (34)

From this it is evident, given our previous results, that the optimum
choice of P is computed by performing a singular value decomposition om
the matrix )

T = [2):8): ... :Zg:Hgl . (35)

If the a, are not all identical, then we simply modify T by scaling zq
and B by ._/rq.

It is evident from the above that the effect of noise is simply to
define additional directions to which the columns of P should be as
orthogonal as possible . That is, P is to be chosen so that the parity
check r(k) has minimal respomse both to the likely sequences of values
of the ideal noise-free observations (as specified by the columns of Zq)
and to the directions in which the observation noise and process noise
have their maximum effects (as determined by the columns of Hq). The
solution of this problem yields, as before, and complete set of parity

13
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checks, corresponding to the left singular vectors of T, ordered in
terms of their degrees of insensitivity to model errors and noise (as
measured by the corresponding singular values).

4.2 Known Igputs

The analysis of the preceding section can be modified somewhat to
allow us to consider the case in which some of the driving terms in (27)
are known inputs. To simplify the discussion in this section, we assume
that all of the components of u(k) are known inputs. The extension to
the case when there are both known inputs and noise is straightforward.

The key difference between the case in which u(k) is unmeasured and
the case in which it is measured is that in the latter case we can
adjust the measured outputs y(k) to account for the effect of the
measured inputs u(k) (see the discussion in Section 2). That is, we can
consider defining a vector of parity checks of the form

(k)
r(k) = pT (36)
o(k) ' -

wvhere PIp = I . The question then is, how do we measure the robustness
of r(k). Clearly, since U(k) is known, we can consider defining a
robustness measure relative to any specified input sequence U(k). This
approach is closer to the spirit of the work of Chow and Willsky [2].
As discussed in Section 5, such an approach allows one to adjust the
parity matrix P on-line by (in effect) scheduling it with respect to
U(k), but the price that is paid for this is significantly greater on-
line and off-line computational complexity.

WhiE*;E'iEiTT“uu~inoeood_is_zn_ﬁgllgg_ghg_ggme philosophy we have
used upto this point. That is, we shall attempt to find a single matrix
P that minimizes the norm of r(k) on the average, as w(k-s) and U(k)
vary over their likely range of values, More precisely, we assume that
U(k) is zero mean, and

(k-s)
Eq wee [w'f(k-s), UT(k)]- nqng (37)
(k)

wvhere N_ is any square root of the covariance matrix above. As an
example, if a feedback control of the form u(k) = Gw(k) is used, then

U(k) = qu(k-s) (38)
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for a matrix Lq that is easily written in terms of G, A

B, and Hq (but
ve omit the explicit details here), so that

qQ* q

N'{l-lr L'{ll . (39)

If process noise were also included, there would not be a determimistic
coupling of U(k) and w(k-s), and a straightforward modification of (38)
would provide the appropriate form for Nq.

Consider now the criterion (32), with all of the aq taken to be 1
for the sake of simplicity. A direct calculation yields

Q
3= e NG O, (40)
q=1
where
z H
q9 q
B, = N, (41)
0o 1

so that the optimum choice of P is obtained from the singular value
decomposition of [Rj:Ry: ... :Rol.

4.3 Detection Versus Robustmess

The methods described to this point involve measuring the quality
of redundancy relations in terms of how small the resulting parity
checks are under normal operating conditions. That is, good parity
checks are maximally insensitive to modeling errors and noise., However,
in some cases one might prefer to broaden the viewpoint. In particular,
there may be parity checks that are not optimally robust (in the sense
that we have discussed) but that are still of significant value because
they are extremely sensitive to particular failure modes. In this
subsection, we consider a criterion that takes such a possiblity into
account, We focus, for simplicity, on the noise-free case. The
extension to include noise or known inputs as in the previous subsection
is straightforward.

The specific problem to be considered is the choice of parity
checks for the robust detection of a particular failure mode. We assume
that the unfailed model of the system is

15
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z(k+l) = Aqx(k) , (42)
y(k) = qu(k) ’ i | (43)
vhile if the failure has occurred the model is
x(k+1) = X x(k), (44)
y(k) = qu(k) . (45)

For example, if we return to the simple case y,(k) = ay;(k), then
under unfailed conditions one might have

a) <afay (46)
while after a failure

This is illustrated pictorially in Figure 3. 1In this case, one would
like to choose the line P onto which one projects in such a way that a
small projection is obtained if no failure has occurred and a large
value results if a failure occurs. That is, ve would like P to be "as
orthogonal as possible” to Z and "as parallel as possible” to Z.

Returning to the general problem, we again assume that q takes on
one of Q possible values, and we let zq and Zq denote the counterparts
of Z_ in (15) for the unfailed and failed models, respectively. We now
have a tradeoff: we would like to make P'fzq as small -as possible for all
q and to make PTZq as large as possible. A natural criteriom, for
minimization over all P satisfying PTP = I » i8 provided by

Q
3= s@eTzg 0% - 127z 03) . (48)
q=1
If we define the matrices
B = (2y:2,: ... :ZQ:ZI:ZZ: oo :ZQJ (49)
and

S = block diagonal [IQn , -Iin . (50)

...........
......




Z ={Z(a),§,s as3d,}

Illustrating Robust Detectability. Here I represents
the set of values of (y,,y,) that can occur under normal operation,
while I represents the corresponding set after the occurrence of a

Figure 3:
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then

J = ¢r [pTesETP) . (51)

It is straightforwvard (see {3]) to show that a minor modification
of the result in [{17] leads to the following solution. We perform an
eigenvector—eigenvalue analysis on the matrix

BSET = U AUT (52)
where U is orthogonal and

A = diagonal [A),.c,Aj]l , A1 £ c0 LAy (53)
Then the optimum choice for P is the first p columns of U:

P= [ul:...:up] . (54)
The corresponding minimum value of J in (48), (51) is

P
ARC D & YR (55)
i=1

Two comments are in order about this solution. The first is that
no more than Qn of the Aq can be positive. In fact the parity check
based on Uq is likely to have larger values under failed rather than
unfailed conditions if gnd only if Aq < 0. Thus we imnediately see
that the maximum number of useful parity relations for detecting this
par;icular failure mode equals the number of negative eigenvalues of
HSH®.

As a second comment, let us contrast the procedure we use here with
the singular value decomposition of Z used in Section 3, which
corresponds essentially to performing an eigenvector-eigenvalue analysis
of 22T, First, assume that precisely the first K of the Aq are
negative, and define

O%"Al s see .a%--kx.
(56)
OFel = Mgel s cee s Of = Ay s

and
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L = diagonal [og,...,0y4] . | (57)
From (52) we have that
BsE = UysyoT . (58)
Assuming that } is nonsingular (which implies K=Qn), define
ve=3y “lgTg , (59)
Then V is S-orthogonal,
vsvl = g, (60)
and H has what we call an S-singular value decomposition
H=1U3V. (61)
Thus, instead of the singular value decomposition of Z that we used in

Section 3, the modified problem considered in this subsection calls for
the S-singular value decomposition of H.

18
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5. Discussion

This paper has developed methods for determining robust parity
relations for failure detection in dynamic systems. The methods build
on the geometric interpretation of parity checks as orthogonal
projections of windows of observations onto subspaces that are as
orthogonal as possible to the observation sequence, given the presence
of model uncertainties and noise. We also considered the modification
of this criterion to enable choice of parity checks for the detection of
a particular failure mode. In each of the cases considered, a single
singular value decomposition (or a variation of it, in the case of
Section 4.3) produced a complete sequence of orthogonal parity
relations, ordered in terms of a meaningful measure of robustness. In
this section we provide brief discussions of several issues concerned

i with the interpretation and use of these results.
}ff 5.1 A Graphical Picture of Robust Redundancy
L

In all three of the formulations considered (in Sections 3, 4.1,
e and 4,2), we considered the problem of finding the p best parity checks.
An obvious question, then, is what is a good value of p? While our
results do not give a precise answer to this question, they do provide a
basis for obtaining a picture of the level of robust redundancy in a
particular system configuration, as outlined next.

Recall that the solutions to our problems provide rank-ordered
lists of parity relations, with a figure of merit for each relation
given by a corresponding singular value (or eigenvalue for the case of
Section 4.3). For example, consider the criterion (22). As we have
seen, minimization of J over all choices of the parity check matrix P
subject to the constraint that PTP = I_ (i.e. that we specify exactly p
parity checks) results in the value J* given in (23), namely the sum of
the p smallest singular values of the matrix Z in (18). The solid curve
in Figure 4 illustrates a plot of this minimum value J* as a functionm of
p. Note that this curve must be convex, since the increment in J* when
wve increase the number of parity checks from p to p+l is °§+1’ which is
at least as large as the squares of any of the p previous singular
values. Furthermore, in this illustration the knee in the solid curve
. indicates a sharp increase in the singular values, which in turn points
:;3 to a value of p beyond which the level of robustness decreases markedly.

{f; Plots as in Figure 4 can also be of value in comparing different
P system configurations. In particular, in specifying a sensor complement
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‘for a particular system, one is certainly interested in finding a set of

sensors that provides a sufficient level of robust redundancy to allow
accurate failure detection to be performed. Returning to Figure &4, the
dashed line might correspond to the robust redundancy curve for an
alternate sensor set. This set has a higher level of robust redundancy
than the one corresponding to the solid line, since the dashed curve
lies below the 80lid one. Clearly this is not a sufficient reason to
state that the alternate semnsor set is superior to the original one --
e.g. if the alternate set was obtained by adding several sensors to the
original set, one would have to check that there is enough additional
redundancy to permit the detection of the larger set of possible
failures associated with this expanded sensor set -~ but it does provide
useful information for this design process.

Finally, we note that throughout the paper we have assumed a fixed
order 8 for the parity checks under consideration. In any application
one would, of course, want to consider several values of s. There are
clear advantages (in terms of respomnse time, and complexity of
inplementation) in considering small values of s, but the dynamics of a
system may be such that there are important relationships of
particularly high order. What one can imagine doing is solving the
robust redundancy problem for s = 1,2,.... Each such problem would
result in a curve as in Figure &, with the curve for each successive
value of s lying below the preceding one. While this would appear to
indicate that larger values of s always produce additional, useful
parity checks, this is not necessarily the case —— one must check to see
if these additional redundancy relations are truly useful or are simply
nonminimal realizations of lower-order parity checks. For example, if
72(k) = ay;(k), then yo(k) - ay;(k) is a valid parity check, but so is
y2(k) + yo(k-1) - ay;(k) - ay;(k-1). See [3] for a polynomial matrix
characterization of a complete set of minimal-order parity checks for
deterministic linear systems and for a numerical example illustrating
the issues raised in this sectionm.

5.2 Alternate Robustness Criteria

In [2], Chow and Willsky consider a somewhat different formulation
of the robust parity check problem. The criterion in [2] has several
significant differences from the one we have used here, and in this
section we describe the relationship between these. In the process we
provide additional motivation for the present formulation. We also
indicate several other criteria that in a sense represent intermediate
steps between [2] and the present paper, and that provide some useful
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v insights. A more thorough development of these can be found in [3].

- The model comsidered in [2] is a modified versiom of (27), (28)
that includes known inputs and noise, and in which the model
- uncertainties are not constrained to a finite set of values. As
;ﬂ_ discussed in Section 4.2 and the Appendix, there are direct ways in
{Q which one can incorporate known inputs and continuous parameter
) variations into the present formulation. The critical difference
between [2] and our approach is the specific criterion chosen to define
robustness. In particular, the principal problem posed and solved in
[2] is the determination of the single best parity check r(k) (so p=l),
' where "best" is defined as that with the minimum worst~case mean-squared
< value over the specified range of parameter uncertainties, with the
[- . system at a specified operating point — i.e., the known input is assumed
- to take on a specified constant value, and the state x(k-s) at the start
of the data window is assumed to be at the equilibrium state
. corresponding to the constant control. While the consideration of
s operation at a particular set point does allow ome to comsider adapting
! parity checks to changing operating conditions, this flexibility is
achieved at the expense of requiring that onme solve a complex monlinear
° optimization problem. Moreover, if one wishes to consider finding
several parity checks, one must either solve one nonlinear optimization
f problem of greater complexity or a sequence of problems of equal
‘-j complexity for each additional parity check.

As discussed in [3], if one removes the operating point comstraint
of [2] and assumes instead that the initial state is completely
unconstrained, one is led to a criterion in which a parity space P has
to be chosen to maximize either the minimum or average angle P makes
‘ with the observation space zq as q ranges over its full set of values.
() Here the cosine of the angle between two subspaces is defined as the
R maximum length of the projection of a unit vector from one ~pace onto
the other., While for any two subspaces this angle can be calculated
using singular values [3], the maximization of the average or worst-case
value of this angle is still a very complex nonlinear optimization
problem. However, on reversing the steps of computing angles and
averaging over parameter uncertainties, we are led to first compute a
subspace that is the average of the zq and then choose P to be
orthogonal to this average. This is very nearly the criterion we
° introduced in Section 3.

; Specifically, as shown in [3] and [16], in this case we again
‘ choose the matrix 2 to minimize (17), but now with the columns of the

;f matrices Zq chosen to form orthonormal bases for the zq. The only
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Appendix
Consider the problem of choosing an Kxp matrix P to minimize

Q
3= T etz g (a.1)
q=1 |

subject to the comstraint that PIP = I. Note first that
3= 127z 17 = cx(pT227p) (a.2)

vhere Z is defined in (16). As discussed in Section 3, we assume
without loss of generality that N<Qun. Let the singular value
decomposition of Z be as given in (18), (19).

We now show that the minimum value of J is

P
J = ZO%_ (A.3)

i=]
and the optimum choice of P is
P = [01502: [ XN ] :up] - (A04)

where the u; are the first p left singular vectors of Z. To do this, ve
use the following elementary result, which is a direct consequence of

the Courant-Fischer minimax principle {3, 14]: Suppose that
A = (A.S)

is nxn, symmetric, and positive semidefinite. Suppose also that A, is
wxm, and let A;(A), A;(A;;) denote the i-th smallest eigenvalue of A,
A); respectively. Then

Ai(A) i Ai(All) » i = 1,...,1! . (Ao6)
Consider then any choice of P satisfying the constraint PTp =1,

and augment this matrix with N-p additional columns so that the square
matrix




F = [P:D] (A.7)

is orthogonal. Then
pTzzTp «

rT2zTF = . (A.8)
* *

Applying (A.6) to (A.8) and using both (A.2) and the fact that F is
orthogonal, we see that

; o} = EAi(zzT) - ;, A (FT22TR) < ex(PTz2Te) = 2Tzl 2 (A.9)
i=l  i=l i=1
From (18) we see that
zzT = gyyToT (A.10)
vith
IIT = disgonal [0}, ... ;o}l . (A.11)

From this we see that the inequality in (A.9) becomes an equality if p
is chosen as in (A.4), thereby proving our assertion.

We note that from this analysis we can directly deduce that the
same choice of p minimizes & variety of other criteria. For example, an
interesting one is

det(PT22Tp) (A.12)
which has the interpretation of minimizing the volume of the projectionm
of the columns of Z onto the subspace P. The proof that the ssme P

minimizes (A.12) is also a straightforward consequence of (A.6) and
(A.8). Specifically

|4 P P
e det(PT22Tp) = TT A;(PTz2Tp) > TT2;(22T) =TT o?  (A.13)
’ i=l i=l i=]
a vith equality resulting once again if P is taken as in (A.4).

Finally, note that (as can be seen in (A.10)) we are actually using
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the eigenvalue~eigenvector decomposition of

Q
22T = ¥z 27
q°q

q=1

in order to find the optimal choice of P. This suggests a direct
generalization of the criterion (A.l1) to allow continuous parameter
variations. Specifically, assume that q ¢ K, a compact subset of a
finite-dimensional Euclidean space, and consider the following
criterion:

- T 2 T T
3= 1Rz li3dq = ex(eT(f z,234q)P} (A.14)
K K
(As before, this can be interpreted as E[ "t(k)llzl. where we have

absorbed the square root of the probability density of q into the
definition of Zq).

Consider the eigenvalue-eigenvector representation

T, o oAT
{Zqzqdq uATo (A.15)

vhere 0 < A; <Ay < .. <Ay, Then the first p columns of U define the
optimal choice of P. Note also that (assuming that A; > 0) if we define

v, - /\'1/2r1'1'zq (A.16)
then

z, = ul\l/zvq (A.17)
vhere UTU = I and

{ququ =1 , " (A.18)

Hence (A.17) is the singular value decomposition of the map Zq .
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